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Abstract: 

The objective of this paper is to study the performance of 

interacting multiple model (IMM) filter with constant 

acceleration (CA), Horizontal constant turn model(HCT) (2D 

constant turn model with a decoupled filter for height modelled 

as constant velocity (CV)), 3D constant turn (CT) models and 

Singer acceleration modes. The existing models will perform 

effectively for 2D turns. This paper provides a comparative 

performance analysis of the estimation algorithm with various   

motion models for 3D turns. Positional error curves have been 

drawn to show the performance of IMM with 3DCT model and 

singer models during 3D turns and 2D turns. Monte Carlo 

simulations shows the capability of singer models to cater wide 

varieties of 3D target motion. 

Key words: maneuvering index, target tracking 

I. INTRODUCTION 

Tracking a target in space amounts to extracting 

information of its motion from the available 

measurements. Most of the algorithms rely on motion 

models to accomplish this task. Hence the accuracy of 

motion models in modeling target dynamics gain a 

significant importance in the realm of target tracking. 

Motion models can be classified into two categories: 

Uniform motion models (straight line motion) and 

Maneuver motion models. Constant velocity (CV) model, 

Constant Acceleration (CA) model falls under the former 

one, whereas the coordinate uncoupled models, 

coordinate coupled turn models belong to the later. 

Manoeuvre modeling, which is tedious as compared to 

uniform motion modelling, had been under limelight over 

the years. A detailed survey of possible manoeuvre 

models is described in [1] bringing out their pros and 

cons.  Singer a correlated in time. ‘Current model’ [3] 

acceleration model [2] laid the foundation for manoeuvre 

models, wherein the manoeuvres are modelled by 

acceleration as a random variable effectively a Singer 

model with adaptive mean for acceleration tries to model 

manoeuvres. Motion models based on target kinematics 

are more appealing as the target manoeuvres are usually a 

turn motion. Such models are coordinate coupled models. 

Kinematic models to track turns in horizontal plane are 

derived from curvilinear motion dynamics. 

 

A ‘2D Constant turn (CT) model usually referred to 

‘Coordinate Turn’ model is one such type which assumes 

that turn rate ω is known. A practical approach to track 

targets in ATC applications is described in [4] which uses 

multiple turn models with different fixed turn rates. 

Augmenting turn rate as a state parameter can give a better 

estimate but it introduce nonlinearity in state transition. 

This approach is used in [5] with polar velocity in place 

of Cartesian velocity. 

2D turn models along with height modelled as random 

walk or constant velocity is suited for ATC applications 

where the turns are usually in horizontal plane. Tracking 

military targets capable of performing ‘high g turns ‘in 3D 

requires coupled models in 3D. 3D Constant Turn (3DCT) 

model with a known turn rate is described in [6, 7] which 

assumes that angular velocity is orthogonal to linear 

velocity making it a ‘3D planar turn model’ (maneuver 

plane is the plane defined by velocity and acceleration). A 

3D constant turn model for unknown turn rate is derived 

in [8] with angular velocity defined as 𝜴 = [𝜔𝒙, 𝜔𝒚, 𝜔𝒛]  

and is augmented into the state vector. A 3D coordinated 

turn model is described in [9] for aircrafts with mean 

thrust(T), mean roll angle(ᴪ), angle of attack, mean 

Lift(L).  

A target under surveillance can’t be modelled by a single 

motion model at all instants of time. Therefore, multiple 

models along with a switching mechanism has to be 

utilized in reality. Interactive Multiple Model (IMM) is 

widely accepted in this regime due to its performance in 

estimating target motion parameters with good accuracy. 

IMM was first introduced in [10 ], in which a set of 

models , with one model active at a time,interact with each 

other to determine the state of a target. IMM is widely 

used in tracking with CV,CA,Singer, and CT as its 

component models. IMM algorithm in [11] compares a 

combination of CV-3DCT with kinematic constraint  with 

CV-Constant turn Rate filter. IMM using CV,CA,Singer 

models [12] is tested  for targets performing ‘high g-turn’ 

in 3D space. 

We compare Singer acceleration models with different 

manoeuvre time constants( 𝜏𝑚) with an IMM filter 

comprising of  CA, Horizontal constant turn model(HCT) 

(2D constant turn model with a decoupled filter for height 

modelled as CV) and 3DCT models. Section 2 discuss the 

motion models specifically Singer Acceleration model, 

HCT and 3DCT.Section 3 describes IMM 

Algorithm.Section 4 portraits the Simulation and the 

performance results. 

 

II. MOTION MODELS IN 3D 

Target dynamics and the measurement observation can be 

mathematically modelled as a  continous state space 

representation 
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     �̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡) +  𝑤(𝑡)                           (1) 

       𝑧(𝑡) = ℎ(𝑥(𝑡), 𝑡) + 𝑣(𝑡)                                       (2) 

Wherein 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡) and ℎ(𝑥(𝑡), 𝑡) are time varying 

functions for state propagation and measurement  

generation respectively. 𝑤(𝑡) and 𝑣(𝑡) are process noise 

sequence and measurement noise sequence respectively. 

𝑥(𝑡), 𝑧(𝑡) and 𝑢(𝑡) are  target state,measurement set and 

the control input the drives the change in state of the 

target. Sensors observe the target at discrete intervals of 

time, 𝑡𝑘 , henceforth discrete state space models are 

preferred in target tracking.Discrete state space models 

are obtained by  discretizing the above continous state 

model representations. 

                 𝑥𝑡+1 = 𝐹𝑡𝑥𝑡 + 𝐺𝑡𝑤𝑡                                   (3) 

                   𝑧𝑡 = 𝐻𝑡𝑥𝑡 + 𝑣𝑡                                          (4) 

Where 𝑥𝑡+1 and 𝑥𝑡 are target states at time 𝑡0 and 𝑡+1 

respectively. 𝐹𝑘 and 𝐻𝑘 

𝑎𝑟𝑒 𝑠𝑡𝑎𝑡𝑒 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑  measurement 

function respectively which can be linear or non linear 

functions.  

 Different state models are described with a state vector 

𝑥𝑡 = [𝑥, �̇�, �̈�, 𝑦, �̇�, �̈�, 𝑧, �̇�, �̈�]𝑇 

 

Singer acceleration model : 

Singer model[2] models target manoeuvre by acceleration 

correlated in time. It assumes that the acceleration 𝑎(𝑡) is 

zero mean first order stationary Markov process with 

autocorrelation function defined as 𝑅𝑎(𝜏) =

𝜎2𝑒−𝛼|𝜏|,where in 𝜎2 is the variance of acceleration and 

𝛼 , the reciprocal of manoeuvre time , 𝛼 = 1
𝜏𝑚

⁄ . 

The state process of  such a linear time invariant system 

is 

                  𝑎(𝑡)̇ = −𝛼 𝑎(𝑡) + 𝑤(𝑡)                             (5) 

Where 𝑤(𝑡) is a noise sequence with constant power 

spectral density 𝑆𝑤 = 2𝛼𝜎2. Its discrete equivalent is         

                   𝑎𝑡+1 = 𝑒−𝛼𝑇𝑎𝑡 + 𝑤𝑡
𝑎                                 (6) 

Where 𝑤𝑡
𝑎  is zero mean white noise sequence with a 

variance 𝜎2(1 − 𝑒−2𝛼𝑇). 

The continuous state space representation of Singer model 

is  

𝑥(𝑡)̇ = [
0 1 0
0 0 1
0 0 −𝛼

] 𝑥(𝑡) + [
0
0
1
]𝑤(𝑡)                          (7) 

 

Its discrete equivalent model is  

 

     𝑥𝑡+1 = 𝐹𝑡𝑥𝑡 + 𝑤𝑡                                                      (8) 

Where 𝑤𝑘 is zero mean noise sequence whose exact 

covariance is defined in [2] 

and 𝐹𝑡 = 𝑑𝑖𝑎𝑔(𝐹𝛼 , 𝐹𝛼 , 𝐹𝛼) 

 

𝐹𝛼 = [
1 𝑇 (𝛼𝑇 − 1 + 𝑒−𝛼𝑇) 𝛼2⁄

0 1 (1 − 𝑒−𝛼𝑇) 𝛼⁄

0 0 𝑒−𝛼𝑇

]                           (9) 

 

The choice of  𝛼 defines various manoeuvres i.e. it 

determines how long the manoeuvre last.  For example , 

for lazy turns, 𝜏𝑚 ≈ 60 𝑠 and for evasive turns 𝜏𝑚 ≈
10 − 20 𝑠 as given in [2]. The distribution for 

acceleration is  modelled as ternary uniform mixture (Fig. 

1). 

 
Fig.1: ternary uniform mixture pdf 

The target moves with no acceleration with probability 𝑃0, 

accelerate or deccelerate at a maximum acceleration 𝑎𝑚𝑎𝑥 

with a probability 𝑃𝑚𝑎𝑥, lest accelerate or deccelerate at a 

uniform rate  distributed over (−𝑎𝑚𝑎𝑥 , 𝑎𝑚𝑎𝑥). Thus the 

variance of acceleration, 𝜎2 comes out as  

          𝜎2 =
𝑎𝑚𝑎𝑥

2

3
(1 + 4𝑃𝑚𝑎𝑥 − 𝑃0)                          (10) 

As  𝜏𝑚 increases (i.e. 𝛼𝑇 decreases) The Singer model 

reduces to CA model and as 𝜏𝑚 decreases (i.e. 𝛼𝑇 

increases) the model reduce to CV model. Hence for a 

choice of 0 < 𝛼𝑇 < ∞ ,The Singer model corresponds to 

a motion sliding in  between nearly CV and nearly CA 

models. Hence it has a far wider coverage than CA and 

CV models. 

 Horizontal constant Turn model (HCT): 

 This model models a turn motion  in horizontal plane as 

a  2D constant turn  along with the height modelled as a 

CV motion with appropriate variance.  

     𝑥𝑘+1 = 𝑑𝑖𝑎𝑔(𝐹𝜔, 𝐹𝑐𝑣)𝑥𝑘 + 𝑤𝑘
𝜔                              (11) 

  

𝐹𝜔 =

[
 
 
 
 
 
 1

sin 𝜔𝑇

𝜔
0

0 cos 𝜔𝑇 0
0 0 0

0
cos𝜔𝑇−1

𝜔
0

0 − sin𝜔𝑇 0
0 −𝜔 0

   0
1−cos 𝜔𝑇

𝜔
0

0 sin𝜔𝑇 0
0 𝜔 0

1
sin 𝜔𝑇

𝜔
0

0 cos𝜔𝑇 0
0 0 0 ]

 
 
 
 
 
 

             (12) 

 

          𝐹𝑐𝑣 = [
1 𝑇 0
0 1 0
0 0 0

]                                              (13) 

 

 

𝑤𝑘
𝜔  is white noise sequence with covariance 

𝑄𝜔 = 𝑑𝑖𝑎𝑔(𝑆𝑥𝑄, 𝑆𝑦𝑄, 𝑆𝑧𝑄𝑐𝑣) 

𝑄 =

[
 
 
 
 
 
 
𝑇5

20

𝑇4

8

𝑇3

6
𝑇4

8

𝑇3

3

𝑇2

2
𝑇3

6

𝑇2

2
𝑇 ]

 
 
 
 
 
 

 

𝑄𝑐𝑣 =

[
 
 
 
 
 
 
𝑇4

4

𝑇3

2

𝑇2

2
𝑇3

2

𝑇2

2
𝑇

𝑇2

2
𝑇 1 ]

 
 
 
 
 
 

 

Where the turn rate 𝜔 is computed as  
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               𝜔 =
�̇��̈�−�̇��̈�

√�̇�2+�̇�2
                                      (14) 

 

3D Constant Turn model (3DCT) : 

This model models a turn motion in 3D space at a constant 

turn rate, 𝛺 and a constant speed, where 𝛺 = ‖𝜴‖;where  

𝜴 = [𝜔𝒙, 𝜔𝒚, 𝜔𝒛]  is the angular velocity vector. 

Constant speed motion (i.e. �̇� = 0) corresponds to  𝒂. 𝒗 =
𝟎 ,where 𝒂 and 𝒗 are acceleration and velocity vectors 

respectively. From the kinematic relations in 3D rotation, 

constant speed can be equivalently represented as 

suggested in [1] 

                   𝒂 = 𝜴 × 𝒗                                                (15) 

Further, under the assumption that 𝜴 ∙ 𝒗 = 𝟎  , the angular 

velocity, after some vector operations can be written as  

                  𝜴 =
𝒗×𝒂

𝑣𝟐                                                      (16) 

Eqn(16) implies that 𝜴 ⊥ 𝒂, and  that 𝒗 and 𝒂 are coplanar 

to which 𝜴  is orthogonal. Thus the motion is planar 

(plane defined by 𝒂 and 𝒗 called manoeuvre plane), but 

not necessarily horizontal, if 𝜴  has a constant direction. 

Eqn(16) holds true even if �̇� ≠ 0 and if 𝜴  has a constant 

direction. 

A constant turn rate motion (i.e. �̇� = 0) can be deduced 

by differentiating eqn (15) 

�̇� = 𝜴 × 𝒂 = 𝜴 × (𝜴 × 𝒗) = (𝜴. 𝒗)𝜴 −
                        (𝜴. 𝜴)𝒗 = −𝜔2𝒗                 (17) 

Where 𝜔 =
‖𝒗×𝒂‖

𝑣2 =
‖𝒗‖‖𝒂‖

𝑣2 =
𝑎

𝑣
                                   (18) 

The continuous state space model can be written as 

𝑥(𝑡)̇ =

𝑑𝑖𝑎𝑔(𝐴(𝜔), 𝐴(𝜔), 𝐴(𝜔))𝑥(𝑡) 𝑑𝑖𝑎𝑔(𝐵, 𝐵, 𝐵)𝑤(𝑡)    (19)                     

                          (18) 

𝐴(𝜔) = [
0 1 0
0 0 1
0 −𝜔2 0

] , 𝐵 = [
0
0
1
]                                  (20) 

 

Where 𝑤(𝑡) is a white noise sequence with power spectral 

density[𝑆𝑥 𝑆𝑦 𝑆𝑧]  
Its discrete equivalent model turns out as given in  

𝑥𝑘+1 = 𝑑𝑖𝑎𝑔(𝐹3𝐷𝐶𝑇(𝜔), 𝐹3𝐷𝐶𝑇(𝜔), 𝐹3𝐷𝐶𝑇(𝜔))                                                     

+ 𝑤𝑘   (20) 

𝐹3𝐷𝐶𝑇(𝜔) =          

[
 
 
 1

𝐬𝐢𝐧 (𝝎𝑻)

𝝎

1−cos (𝜔𝑇)

𝜔2

0 cos (𝜔𝑇)
sin (𝜔𝑇)

𝜔

0 −𝜔sin (𝜔𝑇) cos (𝜔𝑇)]
 
 
 

      (21) 

  

                                                               

𝑄𝑤 = 𝑐𝑜𝑣(𝑤𝑘) = 

 𝑑𝑖𝑎𝑔(𝑆𝑥𝑄3𝐷𝐶𝑇(𝜔), 𝑆𝑥𝑄3𝐷𝐶𝑇(𝜔), 𝑆𝑥𝑄3𝐷𝐶𝑇(𝜔)) 

                                                               (22) 

 

 

 

                                                                    (22) 

 

 

 

III. OVERVIEW OF IMM ALGORITHM 

IMM Algorithm is a multiple motion model in which 𝑟 

different models interact with each other to give the 

estimate of a state of a target at each sampling time. One 

cycle of the algorithm is given in fig.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: One cycle of IMM filter 

 

Model switching probability  P (i,j)  and model 

probability 𝜇(k-1)  forming  mixed state estimates for each 

model.  Subsequently, Filtering at each model based filter 

takes place based on the measurements available at the 

instant 𝑘. Likelihood of each filter estimate with the 

measurement, 𝜆1(𝑘),  𝜆2(𝑘) ,.... 𝜆𝑟(𝑘) ,updates model 

probability 𝜇(k) of each filter. The state estimate �̂�(𝑘, 𝑘), 

and the Covariance �̂�(𝑘, 𝑘) is computed based on the 

updated model probability 𝜇(𝑘).  

  IMM1 comprises of 5 singer models with 𝛼    suited to 

different motion. The choice of   𝛼   for the models is 

given in table.1 as suggested in [14]. IMM2 comprises of 

CA, HCT and 3DCT models. The turn  rate, 𝜔 for HCT 

and 3DCT are computed as in (14) and (17) respectively.  

 

 

 

IV. SIMULATION AND RESULTS 

𝑄3𝐷𝐶𝑇(𝜔) =

[
 
 
 
 

6𝜔𝑇−8sin(𝜔𝑇)+sin (2𝜔𝑇)

4𝜔5

2𝑠𝑖𝑛4(𝜔𝑇 2⁄ )

𝜔4

−2𝜔𝑇+4sin(𝜔𝑇)−sin (2𝜔𝑇)

4𝜔3

2𝑠𝑖𝑛4(𝜔𝑇 2⁄ )

𝜔4

2𝜔𝑇−sin (2𝜔𝑇)

4𝜔3

𝑠𝑖𝑛2(𝜔𝑇)

2𝜔2

−2𝜔𝑇+4sin(𝜔𝑇)−sin (2𝜔𝑇)

4𝜔3

𝑠𝑖𝑛2(𝜔𝑇)

2𝜔2

2𝜔𝑇+sin (2𝜔𝑇)

4𝜔 ]
 
 
 
 

  

�̂�(𝑘, 𝑘) �̂�(𝑘, 𝑘) 

Sum of 

state 
estimate

s 

𝜇(𝑘) 
�̂�1(𝑘, 𝑘) �̂�2(𝑘, 𝑘) �̂�𝑟(𝑘, 𝑘) 

Mod

el 2 

filte

r 

Mo

del r  

filte

r 

𝑍(𝑘) 

Mo

del 

1 

filte

r 
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Model 

probabili

ty update 

𝑥1(𝑘 − 1, 𝑘 − 1) 
𝑥2(𝑘 − 1, 𝑘 − 1) 

𝑥𝑟(𝑘 − 1, 𝑘 − 1) 

P (i,j) 

𝜇(k-1) 

𝜆1(𝑘) 𝜆2(𝑘) 

…

….. 

…
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We have simulated few sophisticated test trajectories to 

compare IMM comprising of Singer models with different 

𝛼 (IMM1) and an IMM (IMM2) comprising of CA, HCT 

and 3DCT models. The different 𝛼  values used for 

simulations are shown in Table.1. The sampling interval 𝑇 

is 0.5 s. In first scenario the target first rises up in CV 

motion for 60 scans then takes HCT turn at 𝜔 = 3 𝑑𝑒𝑔/𝑠 

for 130 scans and moves with CV for next 60 scans. In 

second scenario the target first rises up in CV motion for 

60 scans, then takes HCT turn at 𝜔 = 3 𝑑𝑒𝑔/𝑠 for 60 

scans, then moves with a constant speed for next 10 scans, 

then takes a 3DCT turn with angular velocity  𝜴 , such 

that  𝜴 ⊥ 𝒗  for another 60 scans, then moves in CV 

motion for the next 20 scans and finally takes a HCT turn 

at 𝜔 = 4 𝑑𝑒𝑔/𝑠 for 40 scans. The trajectories are shown 

in Fig. 3 and Fig. 4. 

 

 

 

Table 1. Parameter for Singer models 

 

 
Figure 4: Simulated trajectory scenario 1 

 

The test results are plotted after 100 Monte Carlo runs. It 

is assumed that we get only position measurements from 

the RADAR, corrupted with white noise with standard 

deviations  𝜎𝑟 = 1 𝑚  , 𝜎𝜃 = 0.1 𝑑𝑒𝑔 , 𝜎𝜑 = 0.1 𝑑𝑒𝑔   in 

range, azimuth and elevation respectively. The 

measurements are converted to unbiased Cartesian 

coordinates as suggested in [13]. 

Positional errors of IMM with CV, CA and are plotted and 

compared with IMM with singer model for both 

scenarios.  For 2D turn case the Positional error between 

radar measurements and true value ( PM ) is always less 

than the positional errors between true measurement and 

IMM ( PSINGER ) with singer model and positional error 

between true measurement and IMM ( 2PIMM ) with CV, 

HCT model and 3DCT model. The error graphs are given 

below. 

 

 
Figure 4:Simulated trajectory for scenario 2 

 

 

 
Figure 7 : Comparison of positional errors between 

Singer model and IMM (CV,HCT and 3DCT) for 

scenario 1 

 

 
Figure 8: Comparison of positional errors between 

Singer and IMM (CV,HCT and 3DCT) for scenario 2 

 

 

Total 100 monte carlo runs are used for calculating the 

root mean errors. Here M is the number of Monte carlo 

runs M = 1,2…100. 
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Position err-Singer

Measurement err

Position err-IMM3

Set 𝛼𝑥 𝛼𝑦 𝛼𝑧 

1 1/60 1/60 1/60 

2 1/60 1/60 1 

2 1 1 1/60 

4 1 1 1 

5 1/10 1/10 1/40 
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M

i
M

i

r

PM

)(
1

2






       where r  = positional error 

for each scan between radar measurements and true 

values, PM  is the root mean square error (RMS) for 100 

Monte Carlo runs. 

M

i
M

i

rimm

PIMM

)(
1

2

2

2






       where 2rimm  = 

positional error for each scan between IMM2 estimated 

values and true values, 2PIMM  is the RMS error for 100 

Monte Carlo runs. 

M

i
M

i

gerr

PSINGER

)(
1

2

sin




       where gerrsin  = 

positional error for each scan between IMM with singer 

model estimated values and true values, PSINGER  is the 

RMS error for 100 Monte Carlo runs. 

 

The RMS errors are plotted and are shown in Fig. 7 and 

Fig. 8. it is observed that for horizontal turns both singer 

and IMM2 are reducing the error compared to 

measurement error, where are for 3D turns singer is 

performing well compared to IMM2. Clearly the error 

graphs will depicts the same. 

 

V. CONCLUSION 

In this paper it is attempted to study the performance of 

the IMM filter with different models for horizontal (2D) 

turns and a combination of Horizontal and Vertical (3D) 

turns. We have showed that the estimated trajectories for 

horizontal turns for IMM (IMM2) with CV, CA and 

3DCT model and IMM with singer models are performing 

well and the error graphs plotted will show that the RMS 

errors are  less than the RMS error of measurements. For 

3D turns IMM with singer model is outperforming the 

IMM2 filter and the Monte Carlo simulation results 

confirm the same.  

 

ACKNOWLEDGEMENTS 

 

The authors would like to thank Mr.  Mahesh.V Chief 

Scientist and Management of Bharat Electronics Limited 

for encouragement and support to write this paper. Also 

authors express sincere thanks to C.R. Patil, Senior 

Member Research Staff, BEL for their helpful 

contribution in this research work. 

 

                         REFERENCES 

[1]   Li, X. R., and Jilkov, V. P. (2000) “A survey of maneuvering target 

tracking: Dynamic models”, In Proceedings of the 2000 SPIE 
Conference on Signal and Data Processing of Small Targets, Vol. 

4048, Orlando, FL,Apr. 2000, 212–236. 

[2]    Singer, R. A. (1970) “Estimating optimal tracking filter 
performance for manned maneuvering targets”,Transactions on 

Aerospace and Electronic Systems, AES-6 (July 1970), 473–483. 

[3]    Zhou, H., and Kumar, K. S. P. (1984)  “A current statistical model 
and adaptive algorithm for estimating maneuvering targets”, 

AIAA Journal of Guidance, 7, 5 (Sept.–Oct. 1984), 596–602. 

[4]     Li, X. R., and Bar-Shalom, Y. (1993) “Design of an interacting 
multiple model algorithm for air traffic control tracking”, IEEE 

Transactions on Control Systems Technology, 1, 3 (Sept. 1993), 

186–194; special issue on air traffic control 
[5]     Blom, H. A. P., Hogendoorn, R. A., and van Doorn, B. A.(1992) 

“Design of a multisensor tracking system for advanced air traffic 

control”, In Y. Bar-Shalom (Ed.), Multitarget-Multisensor 
Tracking: Applications and Advances, Vol. II, Norwood, MA: 

Artech House, 1992, ch. 2. 

[6]   Bryan, R. S. (1980) “Cooperative estimation of targets by multple 
aircraft”, M.S. thesis, Air Force Institute of Technology, Wright-

Patterson AFB, Ohio, June, 1980. 

[7]    Maybeck, P. S., Worsley, W. H., and Flynn, P. M. (1982) 
           Investigation of constant turn-rate dynamics for airborne 

vehicle tracking. In Proceedings of the National       Aerospace 

and Electronics Conference (NAECON), 1982, 896–903.  
[8]     Zhan, R., Wan, J.: “Passive maneuvering target tracking using 3D 

constant-turn model”, IEEE Conf. on Radar, 2006, Verona, USA, 

April 2006, pp. 404 
[9]      Berg, R. F. (1983) “Estimation and prediction for maneuvering 

target trajectories”, IEEE Transactions on Automatic Control, 

AC-28 (Mar.1983), 294–304. 
[10]   Blom, H., Bar-Shalom, Y.: “An efficient filter for abruptly 

changing systems”,Proc.23rd IEEE Conf. on Decision and 
Control, Las Vegas, USA, December 1984, 

pp. 656–658. 

[11]   Watson, G., Blair, W.: “IMM algorithm for tracking  targets that 
maneuver through coordinated turns”, Fourth Conf. on the Signal 

and Data Processing of Small 

Targets, Orlando FL, USA, August 1992, pp. 236–247 
[12]    Yang, N., Tian, W., Jin, Z.: ‘An interacting multiple model 

particle filter for maneuvering target location’, Meas. Sci. 

Technol., 2006, 17, (6), pp. 1307–13 
[13] Mo Longbin, SongXxiaoquan,”Unbiased Converted Measurements 

for Tracking” IEEE Transactions on AeroSpace and Elctronic 

Systems,Correspondence VOL. 34 NO 3 JULY 1988, pp 1023-
1027. 

[14]   Lihua Zhu, Xianghong Cheng, “High manoeuvre target tracking 

in coordinated turns”, Key Laboratory of Micro Inertial 
Instrument and Advanced Navigation, Southeast University, 

ISSN 1751-8784,2015,April 
 

 

     
 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                             

 

 

  G Sampath Kumar obtained his B.Tech 
degree in Electronics and communication 

Engineering from Sree Vidyanikethan 

Engineering college and Masters in 
Communications  from IIT Delhi, Delhi and 

is currently  working as memeber research 

staff at Central Research Laboratory, BEL. 
His research activities include Radar signal 

processing, Multi target tracking, and Sensor 

Data Fusion. 

Fahad A. M. obtained B.Tech in 

Electronics and Communications from 
Cochin University of Science and 

Technology and Masters in 

communications systems from NIT Surat. 
His research activities include Radar Signal 

Processing and Estimation and Motion 

modeling. 

11th International Radar Symposium India - 2017 (IRSI-17)

NIMHANS Convention Centre, Bangalore INDIA 5 12-16 December, 2017 



       
 

 

 

 

 

 

Dr. VIJI PAUL P. is working as Member Senior 
Research Staff at Central Research Laboratory, 

BEL. His research activities include Radar signal 

processing, Multi target tracking, and Sensor 
Data Fusion. He obtained PhD degree in 

Electrical Engineering from IIT Bombay.  

 
 

 L Ramakrishnan obtained B.Tech         

(Electronics Engg) MIT, Anna University & 
ME (ECE)   OU. Starting his career at HAL, 

worked in various projects including Air borne 

Transponders, Airborne radar for modern Indian 
fighter aircrafts, Air Route Surveillance Radar, 

Radio Proximity fuses etc. His area of 

professional interest includes Design and 
Development of front ends for Radar, Wireless 

& Communications Systems. He is currently 

serving as Principal Scientist & Group Head at 
Central Research Laboratory, BEL. He 

presently is involved in the design and 

development of embedded computing products 
& signal processing sub systems for radar 

applications. He has over fifteen reputed 

publications to his credit. As part of team, he has 
been bestowed with Raksha Mantri’s award 

under Innovation Category and BEL R&D 

Excellence Awards. He is Member (IEEE) and 
certified PMP. 

 

 

11th International Radar Symposium India - 2017 (IRSI-17)

NIMHANS Convention Centre, Bangalore INDIA 6 12-16 December, 2017 


	Index
	Poster Session
	Author Index 

